\square
Fourth Semester B.E. Degree Examination, July/August 2021 Kinematics of Machines

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define the following:
i) Constrained motion
ii) Structure
iii) Mechanism
iv) Kinematic pairs
v) Kinematic chain vi) Degree of freedom.
(06 Marks)
b. Find degree of freedom for the chains shown in Fig Q1(b) (i), (ii), (iii)

Fig Q1(b) - (i)

Fig Q1(b) - (ii)

Fig Q1(b) - (iii) (06 Marks)
c. Draw a neat sketch of Peaucellier straight line mechanism. Explain with proof how the tracing point describes a straight path.
(08 Marks)
2 a. What is quick return motion? Explain with neat sketch crank slotted lever mechanism.
(10 Marks)
b. Explain with neat sketches :
i) Toggle mechanism
ii) Ratchet and Pawl mechanism.
(10 Marks)
$3 \quad \mathrm{PQRS}$ in a four bar chain with link PS fixed. The lengths of the links are $\mathrm{PQ}=62.5 \mathrm{~mm}$, $\mathrm{QR}=175 \mathrm{~mm}, \mathrm{RS}=112.5 \mathrm{~mm}$ and $\mathrm{PS}=200 \mathrm{~mm}$. The crank PQ rotates at $10 \mathrm{rad} / \mathrm{sec}$ clockwise. Draw the velocity and acceleration diagram when angle $\mathrm{QPS}=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of link QR and RS by graphical method.
(20 Marks)
4 a. State and prove Kennedy's theorem.
(08 Marks)
b. Find all the instantaneous centres of the slider crank mechanism shown in Fig Q4(b) below and find the velocity of the slider when the crank OA rotates with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. Also determine the angular velocity of the connecting rod. The length of the connecting rod and crank are 800 mm and 240 mm and the crank makes an angle of 45° from the inner dead centre.

Fig Q4(b)
(12 Marks)
5 The crank of an IC engine is 90 mm and connecting rod length is 450 mm . The crank is rotating in anticlockwise direction with angular velocity of $15 \mathrm{rad} / \mathrm{s}$ and angular acceleration of $100 \mathrm{rad} / \mathrm{s}^{2}$. Find the acceleration of the piston and the angular acceleration of the connecting rod when the crank has turned 60° from the inner dead centre.
(20 Marks)

6 a. Derive Freudenstein's equation for four bar mechanism.
(12 Marks)
b. A four bar mechanism is required such that the input and output angles are coordinated as given in the table synthesize the four bar mechanism :

| Input crank angle | -40° | 60° | 90° |
| :--- | :--- | :--- | :--- | :--- |
| Output follower angle | -0° | 35° | 65° |

(08 Marks)
7 Construct the profile of a cam to suit the following specification:

Cam shaft diameter	$=40 \mathrm{~mm}$
Least radius of cam	$=25 \mathrm{~mm}$
diameter of roller	$=25 \mathrm{~mm}$
angle of lift	$=120^{\circ}$
angle of fall	$=150^{\circ}$
lift of the follower	$=40 \mathrm{~mm}$

Number of pauses (Dwell) are two of 45° equal interval between motions.
During the lift, the motion is S.H.M
During the fall the motion is UARM
The speed of the cam shaft is uniform
The line of stroke of the follower is off-set 13 mm from the centre of the cam.
(20 Marks)
8 A Cam with 3 cm as minimum radius is rotating clockwise at a uniform speed of 1200 rpm and has to give the motion to the knife edge follower as defined below :
i) Follower to move outward through 3 cm during 120° of cam rotation with cycloidal motion
ii) Dwell for the next 60°
iii) Dwell to return to its starting position during the next 90° with UARM
iv) Dwell for the remaining period.

Draw the cam profile when follower axis is off-set to the right by 1 cm .
(20 Marks)
9 a. Derive an expression for the length of path of contact.
(08 Marks)
b. A pair of 20° full depths involutes spur gears having 30 and 50 teeth respectively of module 4 mm are in mesh. The smaller gear rotates at 1000 rpm . Determine :
i) Sliding velocities at engagement and at disengagement of pair of a teeth
ii) Contanct ratio.
(12 Marks)
10 a. List and explain the types of gear trains.
(08 Marks)
b. An epicyclic gear consists of three gears A, B and C as shown in Fig Q10(b). The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and C and is carried on an arm EF which rotates about the centre of A at 18 rpm . If the gear A is fixed, determine the speed of gears B and C.

Fig Q10(b)
(12 Marks)

2 of 2

